Synthetic Projective Treatment of Cevian Nests and Graves Triangles

Igor Minevich

1 Introduction

Several proofs of the cevian nest theorem (given below) are known, including one using ratios along sides and Ceva's theorem and another using Menelaus's theorem for quadrilaterals [4]. A synthetic proof using only Desargues's and Pappus's theorems has recently been published as well [1]. Here we give another synthetic projective geometry proof, one that uses conics. We also explore the relationship between cevian nests and Graves triangles, a cycle of three triangles each inscribed in the next. In particular, given $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$, we give four different characterizations for the triangles $A_{3} B_{3} C_{3}$ inscribed in $A_{2} B_{2} C_{2}$ which complete a Graves cycle of triangles. The key is to simplify things by using the unique conic \mathscr{C} which touches $B_{1} C_{1}$ at $A_{2}, C_{1} A_{1}$ at B_{2}, and $A_{1} B_{1}$ at C_{2}.

Throughout this note, we use the same notation used (among others) by Coxeter in The Real Projective Plane [6] and Projective Geometry [5]. Namely, points are denoted by capital letters, lines by lowercase letters. The line joining the two points A and B is denoted $A B$, and the intersection of the two lines a and b is denoted $a \cdot b$. If a line and a point are denoted by the same letter (lowercase and uppercase, respectively), then either they are related by the relevant polarity or they are the perspectrix and perspector, respectively, for the same pair of triangles. This will be clear from the context. The statement $H(A B, C D)$ means that C is the harmonic conjugate of D with respect to A and B. Whenever we refer to triangles, we assume they are nondegenerate (that is, the vertices are not collinear and the sides are not concurrent). Finally, we use the term "perspector" for the center of
perspectivity (of two triangles) and "perspectrix" for the axis of perspectivity.

2 The Cevian Nest

Theorem 1. Let A_{1}, B_{1}, C_{1} be the vertices of a triangle; A_{2}, B_{2}, C_{2} the vertices of a triangle inscribed in $A_{1} B_{1} C_{1}$ (so that A_{2} is on $B_{1} C_{1}, B_{2}$ is on $C_{1} A_{1}$, and C_{2} is on $A_{1} B_{1}$); and A_{3}, B_{3}, C_{3} the vertices of a triangle inscribed in $A_{2} B_{2} C_{2}$, the points lying on the sides of the other in a similar fashion. Then if any two of the following three statements hold, so does the third:
(1) $A_{2} A_{3}, B_{2} B_{3}, C_{2} C_{3}$ are concurrent at a point P.
(2) $A_{3} A_{1}, B_{3} B_{1}, C_{3} C_{1}$ are concurrent at a point Q.
(3) $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ are concurrent at a point R.

If any two (thus all three) of the above statements hold, the three triangles $A_{i} B_{i} C_{i}, i=1,2,3$, are said to form a cevian nest.

Note that if $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$, that is, the lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ concur, then since A_{2}, B_{2}, C_{2} are the vertices of a triangle, none of these can be a vertex of $A_{1} B_{1} C_{1}$, and similarly for $A_{3} B_{3} C_{3}$. If, say, $A_{2}=B_{1}$, then $A_{1} A_{2}, B_{1} B_{2}$, and $C_{1} C_{2}$ would have to concur on the side $A_{1} B_{1}$, which forces the points A_{2}, B_{2}, and C_{2} to lie on a single line.

Proof. We first assume (3) and show that (1) holds if and only if (2) does. Let D be the harmonic conjugate of A_{3} with respect to $B_{2} C_{2}, E$ the harmonic conjugate of B_{3} with respect to $C_{2} A_{2}$, and F the harmonic conjugate of C_{3} with respect to $A_{2} B_{2}$. Furthermore, let \mathscr{C} be the conic touching $B_{1} C_{1}$ at A_{2}, $C_{1} A_{1}$ at B_{2}, and $A_{1} B_{1}$ at C_{2}. This conic exists because any pair of Desargues triangles (specifically $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ here) are polar triangles under a certain polarity. (This is 5.71 of [6], but its proof in [6] does not rely on the order axioms, so it holds in any nontrivial projective space. The proof uses Hesse's theorem, but this is 7.61 in [5], so it does not rely on the order axioms either.) Under this polarity, the triangle $A_{2} B_{2} C_{2}$ would lie on the conic since each vertex lies on its own polar (e.g. A_{2} on $B_{1} C_{1}$).

The key fact to note is that, with respect to the conic \mathscr{C}, D is the conjugate of A_{3} along $B_{2} C_{2}, E$ is the conjugate of B_{3} along $C_{2} A_{2}$, and F is the

Figure 1: Cevian Nest
conjugate of C_{3} along $A_{2} B_{2}$. This is because D is the harmonic conjugate of A_{3} with respect to the two self-conjugate points B_{2} and C_{2} along the respective line (8.11 in [5]).

By definition of the conic, $b_{2} \cdot c_{2}=A_{1}$, so $B_{2} C_{2}=a_{1}$. We have $A_{3}=$ $A_{1} Q \cdot B_{2} C_{2}$, so $a_{3}=\left(a_{1} \cdot q\right)\left(b_{2} \cdot c_{2}\right)=\left(a_{1} \cdot q\right) A_{1}$. In particular, a_{3}, a_{1}, and q are concurrent. But D is conjugate to A_{3} on the line $B_{2} C_{2}$, so D lies on a_{3}. Since D also lies on $B_{2} C_{2}=a_{1}, D$ must be the point of intersection of a_{3}, a_{1}, and q. If we assume (2) then similarly, E is the point of intersection of b_{3}, b_{1}, and q, and F is the point of intersection of c_{3}, c_{1}, and q. The line through D, E, and F is then the polar q of Q because each of D, E, and F lies on q, and the point P is the trilinear pole of this line. Conversely, if we start with (1), we first find that the line through D, E, and F is the trilinear polar of P, then find its pole. Since $D=a_{3} \cdot a_{1}, d=A_{3} A_{1}$, etc. so the fact that D, E, and F are collinear implies that $A_{3} A_{1}, B_{3} B_{1}$, and $C_{3} C_{1}$ are concurrent at a point Q.

Now we prove that (1) and (2) imply (3). Let D, E, and F be as above and let \mathscr{C} be the conic touching $C_{1} A_{1}$ at $B_{2}, A_{1} B_{1}$ at C_{2}, and passing through A_{2} (such a unique conic exists by 8.41 in [5]). We must show $B_{1} C_{1}$ is the polar a_{2} of A_{2}, for then by Chasles's theorem (7.31 in [5]) the polar triangles $A_{1} B_{1} C_{1}=a_{2} b_{2} c_{2}$ and $A_{2} B_{2} C_{2}$ would be Desargues triangles.

By the same argument given above, D is the point of intersection of a_{3}, a_{1}, and q. Now let q^{\prime} be a variable line through D, and let $E^{\prime}=q^{\prime} \cdot b_{3}, F^{\prime}=q^{\prime} \cdot c_{3}$. Consider the locus of the intersection $X=E^{\prime} C_{2} \cdot F^{\prime} B_{2}$ as q^{\prime} varies. We have $E^{\prime} \stackrel{D}{\bar{\lambda}} F^{\prime}$, so the relationship of pencils $E^{\prime} C_{2} \wedge F^{\prime} B_{2}$ holds. But the line $B_{2} C_{2}$ is fixed since D lies on $B_{2} C_{2}$, and a projectivity between two pencils is a perspectivity if the line joining the pencils is fixed (dual of 4.22 in [5]). Thus the locus of $E^{\prime} C_{2} \cdot F^{\prime} B_{2}$ is a line.

We claim this line l intersects a_{2} precisely in A_{2}. First suppose $l=a_{2}$. Then $c_{2} \cdot a_{2}$ is on l. Since B_{3} is on $C_{2} A_{2}$, the lines b_{3}, c_{2}, and a_{2} are concurrent. Thus if $X=E^{\prime} C_{2} \cdot F^{\prime} B_{2}=c_{2} \cdot a_{2}$ then the fact that E^{\prime} is collinear with C_{2} and $c_{2} \cdot a_{2}$, yet lies on b_{3}, which goes through $c_{2} \cdot a_{2}$ implies E^{\prime} must be $c_{2} \cdot a_{2}$, or else C_{2} must be on b_{3}. The latter is impossible because C_{2} is on c_{2}, so C_{2} would be the intersection of b_{3}, c_{2}, and a_{2}, contradicting the fact that A_{2} is the only point on the conic which lies on a_{2}. Also, F^{\prime} must be $\left(c_{2} \cdot a_{2}\right) B_{2} \cdot c_{3}$. But D, E^{\prime}, and F^{\prime} are collinear, i.e. D is collinear with $c_{2} \cdot a_{2}$ and $\left(c_{2} \cdot a_{2}\right) B_{2} \cdot c_{3}$, so D lies on $\left(c_{2} \cdot a_{2}\right) B_{2}$. Similarly, since $a_{2} \cdot b_{2}$ is on l we see that D lies on $\left(a_{2} \cdot b_{2}\right) C_{2}$. But D lies on $B_{2} C_{2}$, so this implies $B_{2}, C_{2}, c_{2} \cdot a_{2}$, and $a_{2} \cdot b_{2}$ are all collinear, i.e. $B_{2} C_{2}=a_{2}$, again a contradiction since A_{2} is
the only point on the conic which lies on a_{2}.
Now we show A_{2} lies on l. Hypothesis (1) implies the line through D, E, and F is the trilinear polar of R. If we let $q^{\prime}=E F$ then $E^{\prime}=E$ because E is the conjugate of B_{3} on $C_{2} A_{2}$, so E lies on b_{3}. Similarly, $F^{\prime}=F$. Then $X=E^{\prime} C_{2} \cdot F^{\prime} B_{2}=E C_{2} \cdot F B_{2}=A_{2}$.

Finally, by (2) and the definition of $\mathscr{C}, B_{1}=B_{3} Q \cdot c_{2}$, so we have $b_{1}=\left(b_{3} \cdot q\right) C_{2}$ and, similarly, $c_{1}=\left(c_{3} \cdot q\right) B_{2}$. Hence, by taking $q^{\prime}=q$ above, we see $b_{1} \cdot c_{1}$ lies on l. But B_{1}, C_{1}, and A_{2} are collinear, so b_{1}, c_{1}, and a_{2} are concurrent. Therefore $b_{1} \cdot c_{1}=l \cdot a_{2}=A_{2}$, by the above argument, or dually $B_{1} C_{1}=a_{2}$, just as we needed.

Before moving on, we exhibit the definitions related to cevian nests in the Encyclopedia of Triangle Centers [2] in terms of our P, Q, and R as in theorem 1:

- P is the cevapoint of Q and R with respect to $A_{2} B_{2} C_{2}$.
- Q is the R-Ceva conjugate of P with respect to $A_{2} B_{2} C_{2}$.
- P is the crosspoint of R and Q with respect to $A_{1} B_{1} C_{1}$.
- Q is the P-cross conjugate of R with respect to $A_{1} B_{1} C_{1}$.

3 Graves Triangles and Perspectors Lying on Perspectrices

Recall that a cycle of Graves triangles is a series of three triangles $\Delta_{1}, \Delta_{2}, \Delta_{3}$ such that each is inscribed in the next: Δ_{3} in Δ_{2}, Δ_{2} in Δ_{1}, and Δ_{1} in Δ_{3}. In this section we prove that in a cycle of Graves triangles, if one pair of triangles is a pair of Desargues triangles, then all are. In addition, if $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$, we give two characterizations for all triangles $A_{3} B_{3} C_{3}$ that can be inscribed in $A_{2} B_{2} C_{2}$ to complete a cycle of Graves triangles with $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$.

Exercise 6 of $\S 4.4$ in [5] states: "If one triangle is inscribed in another, any point on a side of the former can be used as a vertex of a third triangle which completes a cycle of Graves triangles." For completeness, we prove
this here (see figure 2). As a matter of fact, we will see the same pattern of proof in the theorems that follow, so this is a good warm-up. Suppose $A_{2} B_{2} C_{2}$ is inscribed in $A_{1} B_{1} C_{1}$. For any point A_{3} on $B_{2} C_{2}$, except B_{2}, C_{2}, and $B_{2} C_{2} \cdot B_{1} C_{1}$, let $B_{3}=C_{1} A_{3} \cdot C_{2} A_{2}$ and $C_{3}=A_{3} B_{1} \cdot A_{2} B_{2}$. To prove $A_{3} B_{3} C_{3}$ completes the cycle of Graves triangles, we just have to show A_{1} lies on $B_{3} C_{3}$, which the Pappus hexagon $C_{1} A_{3} B_{1} C_{2} A_{2} B_{2}$ does. By permuting the letters A, B, C, a similar proof shows the result if we had started with B_{3} on $C_{2} A_{2}$ or C_{3} on $A_{2} B_{2}$.

Now suppose the starting triangles in the exercise had been Desargues, too. Then we can still arrive at a Graves cycle of triangles by starting with a vertex on any side of $A_{2} B_{2} C_{2}$, but we would have more.

Theorem 2. Let $A_{i} B_{i} C_{i}, i=1,2,3$, be a series of Graves triangles such that $A_{1} A_{2}, B_{1} B_{2}$, and $C_{1} C_{2}$ are concurrent. Then the three triangles form a cevian nest, that is, $A_{i} A_{j}, B_{i} B_{j}$, and $C_{i} C_{j}$ are concurrent for all $i \neq j$. In this case, we propose to call this cycle of triangles a Graves cevian nest.

Proof. If we look on the lines $B_{1} C_{1}$ and $B_{2} C_{2}$, the Pappus hexagon $A_{2} C_{2} C_{1} A_{3} B_{1} B_{2}$ shows that $A_{2} C_{2} \cdot A_{3} B_{1}, C_{2} C_{1} \cdot B_{1} B_{2}$, and $C_{1} A_{3} \cdot B_{2} A_{2}$ are collinear. The first point is better called $C_{2} A_{2} \cdot C_{3} A_{3}$; the second point is the perspector of $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$; and the third point is better called $A_{2} B_{2} \cdot A_{3} B_{3}$. Now if we look on the lines $C_{1} A_{1}$ and $C_{2} A_{2}$, the Pappus hexagon $B_{2} A_{2} A_{1} B_{3} C_{1} C_{2}$ shows that $B_{2} A_{2} \cdot B_{3} C_{1}, A_{2} A_{1} \cdot C_{1} C_{2}$, and $A_{1} B_{3} \cdot C_{2} B_{2}$ are collinear. The first point is again $A_{2} B_{2} \cdot A_{3} B_{3}$; the second point is again the perspector of $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$; and the third point is now $B_{2} C_{2} \cdot B_{3} C_{3}$. Thus we see that the points $A_{2} B_{2} \cdot A_{3} B_{3}, C_{2} A_{2} \cdot C_{3} A_{3}$, and $B_{2} C_{2} \cdot B_{3} C_{3}$ are collinear with the perspector of $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$. Since the intersections of the corresponding sides are collinear, the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are Desargues. By theorem 1, the triangles $A_{1} B_{1} C_{1}$ and $A_{3} B_{3} C_{3}$ are Desargues as well.

Corollary 1. If $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$ then any point on a side of $A_{2} B_{2} C_{2}$ can be used to create a third triangle $A_{3} B_{3} C_{3}$ which forms a Graves cevian nest with $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$.

Proof. This just combines exercise 6 of $\S 4.4$ in [5] (proved above) and theorem 2.

Figure 2: Graves Cevian Nest

Theorem 3. Let $A_{i} B_{i} C_{i}, i=1,2,3$, be three triangles in a cevian nest, so that $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$ and $A_{3} B_{3} C_{3}$ is a cevian triangle of $A_{2} B_{2} C_{2}$. Then the following are equivalent (the indices are taken mod 3):
(1) The triangles $A_{i} B_{i} C_{i}, i=1,2,3$, form a cycle of Graves triangles, that is, $A_{1} B_{1} C_{1}$ is also inscribed in $A_{3} B_{3} C_{3}$.
(2) The perspector of $A_{i} B_{i} C_{i}$ and $A_{i+1} B_{i+1} C_{i+1}$ lies on the perspectrix of $A_{i+1} B_{i+1} C_{i+1}$ and $A_{i-1} B_{i-1} C_{i-1}$, for all $i \in\{1,2,3\}$.
(3) The perspector of $A_{i} B_{i} C_{i}$ and $A_{i+1} B_{i+1} C_{i+1}$ lies on the perspectrix of $A_{i+1} B_{i+1} C_{i+1}$ and $A_{i-1} B_{i-1} C_{i-1}$, for some $i \in\{1,2,3\}$.

Proof. (1) $\Rightarrow(2)$: The proof of theorem 2 shows the result for $i=1$. By cyclically permuting the indices, the same proof shows the result to be true for each $i \in\{1,2,3\}$.
$(2) \Rightarrow(3)$: This is trivial since (3) is a special case of (2).
$(3) \Rightarrow(1)$:
Suppose the perspector P of $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ lies on the perspectrix q of $A_{3} B_{3} C_{3}$ and $A_{1} B_{1} C_{1}$. Let the points on q be $L_{q}=B_{3} C_{3} \cdot B_{1} C_{1}, M_{q}=$ $C_{3} A_{3} \cdot C_{1} A_{1}$, and $N_{q}=A_{3} B_{3} \cdot A_{1} B_{1}$. The Pappus hexagon $B_{2} P C_{2} N_{q} A_{3} M_{q}$ shows $B_{2} P \cdot N_{q} A_{3}=B_{3}, P C_{2} \cdot A_{3} M_{q}=C_{3}$, and $C_{2} N_{q} \cdot M_{q} B_{2}=A_{1}$ are collinear. Using the inherent symmetry, by cyclically permuting the letters A, B, C (and thus also L_{q}, M_{q}, N_{q}), we can get two other Pappus hexagons which show similarly that C_{3}, A_{3}, and B_{1} are collinear, and that A_{3}, B_{3}, and C_{1} are collinear.

Suppose the perspector Q of $A_{3} B_{3} C_{3}$ and $A_{1} B_{1} C_{1}$ lies on the perspectrix r of $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$. Let the points on r be $L_{r}=B_{1} C_{1} \cdot B_{2} C_{2}, M_{r}=$ $C_{1} A_{1} \cdot C_{2} A_{2}$, and $N_{r}=A_{1} B_{1} \cdot A_{2} B_{2}$. The Pappus hexagon $B_{1} Q C_{1} M_{r} A_{2} N_{r}$ shows $B_{1} Q \cdot A_{2} M_{r}=B_{3}, Q C_{1} \cdot A_{2} N_{r}=C_{3}$, and $C_{1} M_{r} \cdot N_{r} B_{1}=A_{1}$ are collinear. By cyclically permuting the letters A, B, C, we can prove the other two collinearities.

Suppose the perspector R of $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ lies on the perspectrix p of $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$. Let the points on p be $L_{p}=B_{2} C_{2} \cdot B_{3} C_{3}, M_{p}=$ $C_{2} A_{2} \cdot C_{3} A_{3}$, and $N_{p}=A_{2} B_{2} \cdot A_{3} B_{3}$. We cannot use Pappus hexagons alone here because we do not know, for example, that C_{3} lies on $B_{1} M_{p}$, so we have to be a little tricky. Since $A_{3} B_{3} C_{3}$ is a cevian triangle of $A_{2} B_{2} C_{2}$, we have $H\left(B_{3} M_{p}, C_{2} A_{2}\right)$, and since $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$, we have $H\left(A_{1} B_{1}, C_{2} N_{r}\right)$, where $N_{r}=A_{1} B_{1} \cdot A_{2} B_{2}$ as before. Any two harmonic sets
are related by a unique projectivity (4.21 in [5]), so $B_{3} M_{p} C_{2} A_{2} \bar{\wedge} A_{1} B_{1} C_{2} N_{r}$. The intersection C_{2} of these two ranges is fixed, so this projectivity is a perspectivity (4.22 in [5]): $B_{3} M_{p} C_{2} A_{2} \overline{\bar{\wedge}} A_{1} B_{1} C_{2} N_{r}$. This implies $A_{1} B_{3}, B_{1} M_{p}$, and $N_{r} A_{2}=A_{2} B_{2}$ are concurrent. We will use this concurrency in a moment.

The Pappus hexagon $A_{1} R B_{1} M_{p} C_{2} L_{p}$ shows that $A_{1} R \cdot M_{p} C_{2}=A_{2}$, $R B_{1} \cdot C_{2} L_{p}=B_{2}$, and $B_{1} M_{p} \cdot A_{1} L_{p}$ are collinear. In other words, $A_{2} B_{2}, B_{1} M$, and $A_{1} L_{p}$ are concurrent. But we just saw that $A_{2} B_{2}$ and $B_{1} M_{p}$ are concurrent with $A_{1} B_{3}$, so either $A_{1}=A_{2} B_{2} \cdot B_{1} M_{p}$ is the point of concurrency, or A_{1}, B_{3}, and L_{p} are collinear. The former is impossible because A_{1} cannot lie on $A_{2} B_{2}\left(A_{2} B_{2} C_{2}\right.$ is a cevian triangle of $\left.A_{1} B_{1} C_{1}\right)$. But B_{3} and L_{p} are collinear with C_{3}, so either $L_{p}=B_{3}$ or A_{1}, B_{3}, and C_{3} are collinear. The former is impossible because B_{3} cannot lie on $A_{2} B_{2}\left(A_{3} B_{3} C_{3}\right.$ is a cevian triangle of $A_{2} B_{2} C_{2}$). Therefore, A_{1} lies on $B_{3} C_{3}$. By cyclically permuting the letters A, B, C, we can similarly show B_{1} lies on $C_{3} A_{3}$ and C_{1} lies on $A_{3} B_{3}$.

Corollary 2. Suppose $A_{2} B_{2} C_{2}$ is the cevian triangle of $A_{1} B_{1} C_{1}$ with perspector R and $A_{3} B_{3} C_{3}$ is a triangle inscribed in $A_{2} B_{2} C_{2}$. The triangles $A_{i} B_{i} C_{i}, i=1,2,3$, form a Graves cycle if and only if $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are perspective from an axis that goes through R.

Proof. If the triangles form a Graves cycle, theorem 2 says they form a cevian, so we can apply theorem 3. Conversely, if the perspectrix of $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ goes through R, then in particular the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are Desargues, so theorem 1 says the three triangles form a cevian nest and we can again apply theorem 3.

Corollary 2 gives another characterization of the cevian triangles $A_{3} B_{3} C_{3}$ which complete a cycle of Graves triangles with $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ given $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$. This characterization shows that we can pick any line p through R (and not through A_{2}, B_{2}, or C_{2}) and get the triangle $A_{3} B_{3} C_{3}$ desired by finding the trilinear pole P of p with respect to $A_{2} B_{2} C_{2}$.

Before moving on, we feel we must note the duality of Figure 2 when the three conics are removed from it. There are 9 points (the vertices of the triangles), each of which lies on 5 lines, and 9 lines (the sides of the triangles), each of which passes through 5 points. There are 9 further points (the intersections of corresponding sides of the triangles), each of which lies
on 3 lines, and 9 further lines (the joins of corresponding vertices of the triangles), each of which passes through 3 points. Finally, there are 3 further points (the perspectors), each of which lies on 4 lines, and 3 further lines (the perspectrices) each of which lies on 4 points.

4 Graves Triangles and Conics

Now we introduce the conic \mathscr{C} from the proof of theorem 1 into the picture. First, in theorem 4, we show a natural example of a Graves cevian nest associated with \mathscr{C} (see Figure 3). Then we give two theorems similar to theorem 3 and thus produce, given $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$, another two characterizations of all triangles which can be inscribed in $A_{2} B_{2} C_{2}$ to complete the cycle of Graves triangles.

Figure 3: Graves Cevian Nest Associated with a Conic

Theorem 4. Suppose $A_{1} B_{1} C_{1}$ is a tangential triangle to a conic \mathscr{C} and the points of contact are A_{2}, B_{2}, and C_{2}. For any point $P \in \mathscr{C} \backslash\left\{A_{2}, B_{2}, C_{2}\right\}$, let $A_{3} B_{3} C_{3}$ be the diagonal triangle of the quadrangle $A_{2} B_{2} C_{2} P$. Then the triangles $A_{i} B_{i} C_{i}, i=1,2,3$, form a Graves cevian nest.

Proof. All we have to show is that $A_{1} B_{1} C_{1}$ is inscribed in $A_{3} B_{3} C_{3}$ because the rest follows from theorem 2. To show A_{1} lies on $B_{3} C_{3}$, note that A_{3} lies on $B_{2} C_{2}=a_{1}$, so A_{1} lies on $a_{3}=B_{3} C_{3}$, and similarly for the other two sides.

In the following theorem, we give a converse and thus more conditions that are equivalent to the formation of a Graves cevian nest from a cevian nest.

Theorem 5. Let $A_{i} B_{i} C_{i}, i=1,2,3$, be three triangles in a cevian nest, so that $A_{2} B_{2} C_{2}$ is inscribed in $A_{1} B_{1} C_{1}$ and $A_{3} B_{3} C_{3}$ is inscribed in $A_{2} B_{2} C_{2}$. Then the following are equivalent (the indices are taken mod 3):
(1) The triangles $A_{i} B_{i} C_{i}, i=1,2,3$, form a cycle of Graves triangles, that is, $A_{1} B_{1} C_{1}$ is also inscribed in $A_{3} B_{3} C_{3}$.
(2) The perspector of $A_{i} B_{i} C_{i}$ and $A_{i+1} B_{i+1} C_{i+1}$ lies on the conic \mathscr{C} touching $A_{i-1} B_{i-1} C_{i-1}$ at A_{i}, B_{i}, and C_{i}, for all $i \in\{1,2,3\}$.
(3) The perspector of $A_{i} B_{i} C_{i}$ and $A_{i+1} B_{i+1} C_{i+1}$ lies on the conic \mathscr{C} touching $A_{i-1} B_{i-1} C_{i-1}$ at A_{i}, B_{i}, and C_{i}, for some $i \in\{1,2,3\}$.

Proof. (1) $\Rightarrow(2)$: We prove the result for $i=2$; the other two cases can be proven by cyclically permuting the indices $1,2,3$. Suppose \mathscr{C} touches $B_{1} C_{1}$ at $A_{2}, C_{1} A_{1}$ at B_{2}, and $A_{1} B_{1}$ at C_{2}. We need to prove $P=A_{2} A_{3} \cdot B_{2} B_{3}$ lies on \mathscr{C}. We do this by showing $A_{3} B_{3} C_{3}$ is a self-polar triangle. Since $A_{3} B_{3} C_{3}$ is the diagonal triangle of the quadrange $A_{2} B_{2} C_{2} P$, we know P is the harmonic conjugate of A_{2} with respect to $P A_{2} \cdot B_{3} C_{3}$ and A_{3}. If $A_{3} B_{3} C_{3}$ were self-polar, these last two points would be conjugate. Because conjugate points on a secant of a conic are harmonic conjugates with respect to the two self-conjugate points on the secant, P would then have to be a self-conjugate point and lie on \mathscr{C}.

We must show $B_{3} C_{3}=a_{3}$. We know $A_{3}=A_{1} Q \cdot B_{2} C_{2}$, so $a_{3}=\left(a_{1} \cdot q\right)\left(b_{2}\right.$. $\left.c_{2}\right)=\left(B_{2} C_{2} \cdot q\right) A_{1}$. Because of (1) we know A_{1} lies on $B_{3} C_{3}$, so we just have to show $B_{2} C_{2} \cdot q$ also lies on $B_{3} C_{3}$. But, just as in the proof of theorem $1, q$ is
the trilinear polar of P, so $B_{2} C_{2} \cdot q$ is the harmonic conjugate of $A_{3} P \cdot B_{2} C_{2}$ and thus lies on $B_{3} C_{3}$ because $A_{3} B_{3} C_{3}$ is a cevian triangle of $A_{2} B_{2} C_{2}$.
$(2) \Rightarrow(3)$: This is again trivial since (3) is a special case of (2).
$(3) \Rightarrow(1)$: If $i=1$, the condition that a conic touching $A_{3} B_{3} C_{3}$ at A_{1}, B_{1}, and C_{1} even exists immediately implies $A_{1} B_{1} C_{1}$ is inscribed in $A_{3} B_{3} C_{3}$, so there is nothing to prove.

If $i=2$, then (1) immediately follows from theorem 4.
If $i=3$, then $Q=A_{1} A_{3} \cdot B_{1} B_{3}$ lies on the conic \mathscr{C} touching $A_{2} B_{2} C_{2}$ at A_{3}, B_{3}, and C_{3}. This time, though $A_{3} B_{3} C_{3} Q$ is a quadrangle inscribed in \mathscr{C}, we do not know its diagonal triangle is $A_{1} B_{1} C_{1}$ yet. If we can prove this, then the fact that $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$ would imply $a_{1} b_{1} c_{1}=A_{1} B_{1} C_{1}$ is a cevian triangle of $a_{2} b_{2} c_{2}=A_{3} B_{3} C_{3}$, so the vertices of $A_{1} B_{1} C_{1}$ would lie on the sides of $A_{3} B_{3} C_{3}$.

Figure 4: Anticevian Triangles of $A_{2} B_{2} C_{2}$ Lying on $A_{3} Q, B_{3} Q, C_{3} Q$
By theorem 4, $A_{2} B_{2} C_{2}$ is a cevian triangle of the diagonal triangle of $A_{3} B_{3} C_{3} Q$. We also know $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$, whose vertices lie on the lines $A_{3} Q, B_{3} Q$, and $C_{3} Q$, so we just have to prove that there is at most one anticevian triangle of $A_{2} B_{2} C_{2}$ whose vertices lie on these lines. We will show there is at most one triangle $A B C$, with A on $A_{3} Q, B$ on $B_{3} Q$, and C on $C_{3} Q$, such that $A_{2} B_{2} C_{2}$ is even inscribed in $A B C$ (see Figure 4).

The strategy is to not restrict A to the line $A_{3} Q$ and find the locus of all A in the plane such that $A_{2} B_{2} C_{2}$ is inscribed in triangle $A B C$ for some
B on $B_{3} Q$ and C on $C_{3} Q$, then intersect that locus with the line $A_{3} Q$. For any B on $B_{3} Q$, we can find C as $B A_{2} \cdot C_{3} Q\left(B A_{2} \neq C_{3} Q\right.$ because A_{2} cannot lie on $C_{3} Q=C_{1} C_{3}$. If it did, then $C_{1} A_{2}=B_{1} C_{1}$ would pass through Q, which would mean $C_{1} A_{1}=C_{3} A_{3}$. But B_{2} lies on $C_{1} A_{1}$, and $A_{3} B_{3} C_{3}$ is a cevian triangle of $A_{2} B_{2} C_{2}$, so B_{2} cannot lie on $C_{3} A_{3}$.) Now we can find A as $C B_{2} \cdot B C_{2}$. But this is exactly the Braikenridge-MacLaurin construction for a conic through five points (9.22 in [5]): $A B C$ is a variable triangle with two of the vertices (namely B and C) lying on two fixed lines $\left(B_{3} Q\right.$ and $\left.C_{3} Q\right)$ and the three sides passing through three fixed points (the vertices of $A_{2} B_{2} C_{2}$, which are noncollinear by the assumption that $A_{2} B_{2} C_{2}$ is a cevian triangle of $\left.A_{1} B_{1} C_{1}\right)$. The only thing to check is that $B_{3} Q$ and $C_{3} Q$ are not concurrent with $B_{2} C_{2}$, that is, Q does not lie on $B_{2} C_{2}$. If it did, then since A_{3} also lies on $B_{2} C_{2}$, we would have $A_{3} A_{1}=A_{3} Q=B_{2} C_{2}$. But $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$, so A_{1} cannot lie on $B_{2} C_{2}$. Thus, the locus of all possible A in the plane is a conic which passes through $B_{2}, C_{2}, Q, B_{3} Q \cdot A_{2} B_{2}$, and $C_{3} Q \cdot A_{2} C_{2}$. In particular, it intersects the line $A_{3} Q$ in Q and at most one more point. Clearly, A cannot be Q itself - C_{2} would again lie on $A_{3} Q$, which is impossible for the same reason A_{2} cannot lie on $C_{3} Q$, as above. Thus, A can take at most one place on $A_{3} Q$, so there is at most one such triangle $A B C$ in which $A_{2} B_{2} C_{2}$ can be inscribed.

Corollary 3. Suppose $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$ and $A_{3} B_{3} C_{3}$ is a triangle inscribed in $A_{2} B_{2} C_{2}$. Let \mathscr{C} be the conic touching $A_{1} B_{1} C_{1}$ at A_{2}, B_{2}, and C_{2}. The triangles $A_{i} B_{i} C_{i}, i=1,2,3$, form a Graves cycle if and only if $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are perspective from a center that lies on \mathscr{C}.

Before moving on to the final characterization, we need another interesting lemma.

Lemma 1. (1) If, for some polarity, a triangle $A_{2} B_{2} C_{2}$ is the cevian triangle of both the triangles $A_{1} B_{1} C_{1}$ and $a_{1} b_{1} c_{1}$, then $A_{1} B_{1} C_{1}$ is self-polar.
(2) If, for some polarity, a triangle $A_{2} B_{2} C_{2}$ is the anticevian triangle of both the triangles $A_{1} B_{1} C_{1}$ and $a_{1} b_{1} c_{1}$, then $A_{1} B_{1} C_{1}$ is self-polar.

Proof. (1) Either (i) $a_{1}=B_{1} C_{1}$ or (ii) $A_{2}=a_{1} \cdot B_{1} C_{1}$, since A_{2} lies on a_{1} and $B_{1} C_{1}$, and similarly for B_{2} and C_{2}. It is impossible that (ii) holds for each of A_{2}, B_{2}, and C_{2} since these are the intersections of the corresponding sides of $A_{1} B_{1} C_{1}$ and $a_{1} b_{1} c_{1}$, which, by Chasles's theorem, would be collinear. We can assume without loss of generality that $a_{1}=B_{1} C_{1}$ since otherwise we
can rename the vertices. Then $A_{1}=b_{1} \cdot c_{1}$, so A_{1} lies on b_{1} and c_{1}. Now if $B_{2}=b_{1} \cdot C_{1} A_{1}$ then, since A_{1} lies on b_{1} and $C_{1} A_{1}$, we have $A_{1}=B_{2}$, which is impossible since $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$. Thus $b_{1}=C_{1} A_{1}$ and, similarly, $c_{1}=A_{1} B_{1}$.
(2) Suppose $A_{1} B_{1} C_{1}$ is not self-polar. Both A_{1} and $b_{1} \cdot c_{1}$ lie on $B_{2} C_{2}$, and similarly for the other two sides of $A_{2} B_{2} C_{2}$. By Chasles's theorem $A_{1} B_{1} C_{1}$ and $a_{1} b_{1} c_{1}$ are Desargues, so $A_{1}\left(b_{1} \cdot c_{1}\right)=B_{2} C_{2}, B_{1}\left(c_{1} \cdot a_{1}\right)=C_{2} A_{2}$, and $C_{1}\left(a_{1} \cdot b_{1}\right)=A_{2} B_{2}$ are concurrent, which contradicts the fact that $A_{2} B_{2} C_{2}$ is a triangle.

It is curious to note that the proof of (1) requires that the vertices of $A_{2} B_{2} C_{2}$ are not collinear, while the proof of (2) requires that the sides are not concurrent.

The final theorem of this section is the basis for the last characterization of the triangles $A_{3} B_{3} C_{3}$ that complete a Graves cevian nest.

Theorem 6. Let $A_{i}, B_{i}, C_{i}, i=1,2,3$, be the vertices of a cevian nest, so that $A_{2} B_{2} C_{2}$ is inscribed in $A_{1} B_{1} C_{1}$ and $A_{3} B_{3} C_{3}$ is inscribed in $A_{2} B_{2} C_{2}$. Then the following are equivalent (the indices are taken mod 3):
(1) The triangles $A_{i} B_{i} C_{i}, i=1,2,3$, form a cycle of Graves triangles, that is, $A_{1} B_{1} C_{1}$ is also inscribed in $A_{3} B_{3} C_{3}$.
(2) The perspectrix of $A_{i} B_{i} C_{i}$ and $A_{i+1} B_{i+1} C_{i+1}$ is tangent to the conic \mathscr{C} touching $A_{i+1} B_{i+1} C_{i+1}$ at A_{i-1}, B_{i-1}, and C_{i-1}, for all $i \in\{1,2,3\}$.
(3) The perspectrix of $A_{i} B_{i} C_{i}$ and $A_{i+1} B_{i+1} C_{i+1}$ is tangent to the conic \mathscr{C} touching $A_{i+1} B_{i+1} C_{i+1}$ at A_{i-1}, B_{i-1}, and C_{i-1}, for some $i \in\{1,2,3\}$.

Proof. (1) $\Rightarrow(2)$: We prove the result for $i=3$; the other two cases can be proven by cyclically permuting the indices $1,2,3$. Suppose \mathscr{C} touches $B_{1} C_{1}$ at $A_{2}, C_{1} A_{1}$ at B_{2}, and $A_{1} B_{1}$ at C_{2}. By the proof of theorem 5 , the triangle $A_{3} B_{3} C_{3}$ is self-polar. Now the perspectrix of $A_{3} B_{3} C_{3}$ and $A_{1} B_{1} C_{1}$ is $\left(B_{3} C_{3} \cdot B_{1} C_{1}\right)\left(C_{3} A_{3} \cdot C_{1} A_{1}\right)$, so its polar is $A_{3} A_{2} \cdot B_{3} B_{2}$, the perspector P of $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$. Since the perspectrix is tangent to the conic, its polar lies on itself, and by theorem $5, P$ lies on \mathscr{C}. Thus, the perspectrix touches \mathscr{C} at P.
$(2) \Rightarrow(3)$: This is again trivial since (3) is a special case of (2).
$(3) \Rightarrow(1)$: If $i=1, \mathscr{C}$ touches $A_{2} B_{2} C_{2}$ at A_{3}, B_{3}, and C_{3}. The fact that $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$ implies $a_{1} b_{1} c_{1}$ is a cevian triangle of
$a_{2} b_{2} c_{2}=A_{3} B_{3} C_{3}$. Since $A_{3} B_{3} C_{3}$ is a cevian triangle of $A_{2} B_{2} C_{2}$, the triangles $A_{2} B_{2} C_{2}, A_{3} B_{3} C_{3}$, and $a_{1} b_{1} c_{1}$ form a cevian nest. The pole of the perspectrix of $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ is the perspector of $a_{1} b_{1} c_{1}$ and $A_{3} B_{3} C_{3}$, and it lies on \mathscr{C} because the perspectrix is self-polar. We can now apply theorem 5 to the cevian nest just mentioned to see that $A_{2} B_{2} C_{2}$ is a cevian triangle of $a_{1} b_{1} c_{1}$. But $A_{2} B_{2} C_{2}$ is also a cevian triangle of $A_{1} B_{1} C_{1}$, so by part (1) of lemma 1 $A_{1} B_{1} C_{1}$ is self-polar, which means $A_{1} B_{1} C_{1}=a_{1} b_{1} c_{1}$ is a cevian triangle of $A_{3} B_{3} C_{3}$.

If $i=2$, the condition that a conic touching $A_{3} B_{3} C_{3}$ at A_{1}, B_{1}, and C_{1} even exists immediately implies $A_{1} B_{1} C_{1}$ is inscribed in $A_{3} B_{3} C_{3}$, so there is nothing to prove.

If $i=3, \mathscr{C}$ touches $A_{1} B_{1} C_{1}$ at A_{2}, B_{2}, and C_{2}. Because $A_{3} B_{3} C_{3}$ is a cevian triangle of $A_{2} B_{2} C_{2}, a_{2} b_{2} c_{2}=A_{1} B_{1} C_{1}$ is a cevian triangle of $a_{3} b_{3} c_{3}$, and this time the triangles $a_{3} b_{3} c_{3}, A_{1} B_{1} C_{1}$, and $A_{2} B_{2} C_{2}$ form the cevian nest we are interested in. We can again apply theorem 5 to this cevian nest to see that $a_{3} b_{3} c_{3}$ is a cevian triangle of $A_{2} B_{2} C_{2}$. But $A_{3} B_{3} C_{3}$ is also a cevian triangle of $A_{2} B_{2} C_{2}$, so by part (2) of lemma $1 A_{3} B_{3} C_{3}$ is self-polar, which means $A_{1} B_{1} C_{1}$ is a cevian triangle of $a_{3} b_{3} c_{3}=A_{3} B_{3} C_{3}$.

Here at last is our final characterization of the $A_{3} B_{3} C_{3}$ triangles that complete a Graves cycle.

Corollary 4. Suppose $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$ and $A_{3} B_{3} C_{3}$ is a triangle inscribed in $A_{2} B_{2} C_{2}$. Let \mathscr{C} be the conic touching $A_{1} B_{1} C_{1}$ at A_{2}, B_{2}, and C_{2}. The triangles $A_{i} B_{i} C_{i}, i=1,2,3$, form a Graves cycle if and only if $A_{3} B_{3} C_{3}$ and $A_{1} B_{1} C_{1}$ are perspective from an axis that is tangent to \mathscr{C}.

5 Perspectrix \leftrightarrow Conic Map

Now consider the perspectrix of $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ and the conic \mathscr{C} touching $A_{1} B_{1} C_{1}$ at $A_{2} B_{2} C_{2}$, as in Figure 5. This perspectrix is the trilinear polar of the perspector R of $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ with respect to $A_{2} B_{2} C_{2}$ and also the polar r of R with respect to \mathscr{C} (we have seen this multiple times, especially in the proof of theorem 1). Combinining theorems 3 and 5 , we see that the perspector Q of $A_{1} B_{1} C_{1}$ and $A_{3} B_{3} C_{3}$ lies on r if and only if the perspector P of $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ lies on the conic \mathscr{C}.

If we fix $A_{1} B_{1} C_{1}$ and P, the above argument gives us a bijective map (with an obvious inverse) from r to \mathscr{C} as follows. If Q is any point on r, find $A_{3} B_{3} C_{3}$ by joining Q to the vertices of $A_{1} B_{1} C_{1}$ and finding the corresponding intersections with the sides of $A_{2} B_{2} C_{2}$. Then by theorem $1, A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are perspective from a point P, and by theorems 3 and $5, P$ lies on the conic. In other words, P is the cevapoint of Q and R with respect to $A_{2} B_{2} C_{2}$. For the inverse map, if P lies on \mathscr{C}, let $A_{3} B_{3} C_{3}$ be the cevian triangle of P with respect to $A_{2} B_{2} C_{2}$. Then the perspector Q of $A_{1} B_{1} C_{1}$ and $A_{3} B_{3} C_{3}$ lies on r. In other words, Q is the R-Ceva conjugate of P with respect to $A_{2} B_{2} C_{2}$. Since the inverse of the map exists, it is bijective.

Figure 5: Perspectrix \leftrightarrow Conic Map
A somewhat different construction for the inverse of this map was given by Francois Rideau in [3] as follows (in our notation). Given a point P on \mathscr{C}, find its tangent (or polar) p. Then Q is the trilinear pole of p with respect to $A_{1} B_{1} C_{1}$ (see Figure 6 below). To prove this map is the same, we first note that in our description we connect A_{1} to A_{3} and similarly for the other
vertices, then take the intersection of the resulting concurrent lines, and in his construction we connect A_{1} to the harmonic conjugate of $p \cdot B_{1} C_{1}$ with respect to B_{1} and C_{1} instead, so we just have to show that these two lines are the same. That is, we have to show A_{3} lies on the harmonic conjugate of $A_{1}\left(p \cdot B_{1} C_{1}\right)$ with respect to $A_{1} B_{2}$ and $A_{1} C_{2}$. This is because the harmonic conjugate of $A_{3}=A_{2} P \cdot B_{2} C_{2}$ with respect to B_{2} and C_{2} is the conjugate point $\left(a_{2} \cdot p\right)\left(b_{2} \cdot c_{2}\right) \cdot B_{2} C_{2}=\left(a_{2} \cdot p\right) A_{1} \cdot B_{2} C_{2}$.

Figure 6: Rideau's Construction
The following is in response to the two questions asked in [3] then. If we know a triangle $A_{1} B_{1} C_{1}$ circumscribes a conic \mathscr{C} and the points of contact A_{2}, B_{2}, and C_{2}, we have the following two projective constructions:
(1) Given P on \mathscr{C}, to construct the tangent to P, find the trilinear polar of $A_{1}\left(A_{2} P \cdot B_{2} C_{2}\right) \cdot B_{1}\left(B_{2} P \cdot C_{2} A_{2}\right)$ with respect to $A_{1} B_{1} C_{1}$.
(2) Given a tangent line p to \mathscr{C}, to find the point P of contact, first find the trilinear pole Q of p with respect to $A_{1} B_{1} C_{1}$. Then $P=A_{2}\left(A_{1} Q \cdot B_{2} C_{2}\right)$. $B_{2}\left(B_{1} Q \cdot C_{2} A_{2}\right)$.

6 Two Cevian Triangles

This section deals with the situation when there are two cevian triangles $D E F$ and $D^{\prime} E^{\prime} F^{\prime}$ of $A B C$ and the conic \mathscr{C} that goes through all six vertices. Among other results, we prove there is exactly one triangle $X Y Z$ which
simultaneously completes the two Graves cycles with $A B C$ and $D E F$ and with $A B C$ and $D^{\prime} E^{\prime} F^{\prime}$.

Figure 7: Two Cevian Triangles

Theorem 7. Suppose $D E F$ and $D^{\prime} E^{\prime} F^{\prime}$ are two different cevian triangles of $A B C$ with respective perspectors P and P^{\prime}. Defining

$$
X=E F \cdot E^{\prime} F^{\prime}, Y=F D \cdot F^{\prime} D^{\prime}, Z=D E \cdot D^{\prime} E^{\prime}
$$

XYZ is the unique triangle which simultaneously completes a Graves cycle with $A B C$ and $D E F$ and another Graves cycle with $A B C$ and $D^{\prime} E^{\prime} F^{\prime}$.

Proof. To show uniqueness, first note that by corollary 2 the perspector of $A B C$ and any triangle $X_{1} Y_{1} Z_{1}$ completing a graves cycle with $D E F$ must lie on the perspectrix of $A B C$ and $D E F$. Similarly, this perspector must also lie on the perspectrix of $A B C$ and $D^{\prime} E^{\prime} F^{\prime}$. Since the two cevian triangles are not the same, the perspectrices are not the same, so they intersect in one point O. This point must be the perspector of $A B C$ and $X_{1} Y_{1} Z_{1}$. In other words, $X_{1} Y_{1} Z_{1}$ must be the anticevian triangle of $A B C$ with respect to O.

Since $D E F$ is inscribed in $A B C$ and $X Y Z$ is inscribed in both $D E F$ and $D^{\prime} E^{\prime} F^{\prime}$, we just have to show $A B C$ is inscribed in $X Y Z$. The following idea is due to Patrick Morton ${ }^{1}$. Let \mathscr{D} be the conic through A, B, C, P, P^{\prime}. Then $D E F$ and $D^{\prime} E^{\prime} F^{\prime}$, being diagonal triangles of quadrangles inscribed in \mathscr{D}, are self-polar with respect to \mathscr{D}. As $A=E E^{\prime} \cdot F F^{\prime}, a=\left(e \cdot e^{\prime}\right)\left(f \cdot f^{\prime}\right)=$ $\left(F D \cdot F^{\prime} D^{\prime}\right)\left(D E \cdot D^{\prime} E^{\prime}\right)=Y Z$. Since A lies on \mathscr{D}, it lies on its polar $a=Y Z$ as well. Similarly, B lies on $b=Z X$ and C on $c=X Y$.

Theorem 8. In the situation of theorem 7, the traces $D E F$ and $D^{\prime} E^{\prime} F^{\prime}$ lie on a unique conic \mathscr{C}. Furthermore,

1) The triples of triangles $X Y Z, A B C, D E F$ and $X Y Z, A B C, D^{\prime} E^{\prime} F^{\prime}$ form Graves cevian nests.
2) The triangle $X Y Z$ is self-polar with respect to this conic.
3) The trilinear polars of P and P^{\prime} with respect to $A B C$ and the polars p and p^{\prime} of P and P^{\prime} with respect to \mathscr{C} are concurrent at the perspector O of $A B C$ and $X Y Z$.
4) The perspectors of $X Y Z$ with $D E F$ and $D^{\prime} E^{\prime} F^{\prime}$, respectively, lie on \mathscr{C}.
5) The conic \mathscr{D} above is the locus of all points P_{1} whose cevian triangles on $A B C$ complete the Graves cycle with $X Y Z$ and $A B C$.

Proof. Let $G=E F^{\prime} . E^{\prime} F, H=F D^{\prime} . F^{\prime} D$, and $I=D E^{\prime} . D^{\prime} E$. The Pappus hexagon $B E F^{\prime} C F E^{\prime}$ shows P, G, P^{\prime} are collinear. Similarly (by permuting the letters in A, B, C and $D, E, F)$ we see that P, H, P^{\prime} are collinear, and P, I, P^{\prime} are collinear. Thus, the points G, H, I, P, P^{\prime} are all collinear. By the converse of Pascal's theorem (essentially the Braikenridge-Maclaurin

[^0]construction 9.22 of [5]) the hexagon $D E^{\prime} F D^{\prime} E F^{\prime}$ shows that the points $D, E, F, D^{\prime}, E^{\prime}, F^{\prime}$ all lie on a conic. There are at least five distinct points among these (five if $P P^{\prime}$ goes through A, B, or C), and there is a unique conic through five points.

Now, 1) can be proven by theorem 2. Or, we could use Chasles's theorem on triangles $A B C$ and $X Y Z$ with respect to the conic \mathscr{D}, since they are polar triangles by the proof of theorem 7, and then the cevian nest theorem (theorem 1). The Pascal hexagon $D F E^{\prime} D^{\prime} F^{\prime} E$ shows Y, G, Z are collinear. Then since $A G X$ is the diagonal triangle of $E E^{\prime} F F^{\prime}$, the polar of X is $A G=Y Z$, and similarly for the other sides. Thus $X Y Z$ is self-polar. It was shown in the proof of theorem 7 that the trilinear polars of P and P^{\prime} pass through O. The quadrangles $D D^{\prime} E E^{\prime}$ and $F F^{\prime} D D^{\prime}$ with diagonal triangles $B H Y$ and $C I Z$ show that the polar of $O=B Y \cdot C Z$ is $o=H I=P P^{\prime}$, so $O=p \cdot p^{\prime}$. If Q is the perspector of $D E F$ and $X Y Z, D$ and Q are harmonic conjugates with respect to X and $D X \cdot Y Z$ because $X Y Z$ is the diagonal triangle of $D E F Q$. But X is conjugate to $D X \cdot Y Z$ since $X Y Z$ is self-polar, so Q must be the other intersection of $D X$ with the conic, and similarly for the perspector of $D^{\prime} E^{\prime} F^{\prime}$ and $X Y Z$. The last remark is just an application of theorem 5.

7 Conclusion

Given $A_{2} B_{2} C_{2}$ is a cevian triangle of $A_{1} B_{1} C_{1}$, we now have the following four different characterizations for the triangles $A_{3} B_{3} C_{3}$ which can be inscribed in $A_{2} B_{2} C_{2}$ to complete a Graves cycle. A vertex of one such triangle may lie anywhere on a given side of $A_{2} B_{2} C_{2}$ (except the vertices of $A_{2} B_{2} C_{2}$ and the intersections of corresponding sides of $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$), and it is easy to derive the triangle given one vertex. The triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ must be perspective, and the perspectrix may be any line through R but not through A_{2}, B_{2}, or C_{2}. The triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ must be perspective, and the perspector may be any point other than A_{2}, B_{2}, or C_{2} on the conic \mathscr{C} touching $A_{1} B_{1} C_{1}$ at A_{2}, B_{2}, and C_{2}. Finally, the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ must be perspective, and the perspectrix may be any line tangent to this conic \mathscr{C} other than the tangents at A_{2}, B_{2}, and C_{2}.

In particular, in a Graves cevian nest consisting of triangles Δ_{1}, Δ_{2}, and Δ_{3}, where Δ_{i+1} is a cevian triangle of Δ_{i}, if \mathscr{C} is the conic touching Δ_{i} at
the vertices of Δ_{i+1}, then the perspectrix of Δ_{i-1} and Δ_{i} touches \mathscr{C} at the perspector of Δ_{i+1} and Δ_{i-1}, for each $i \in\{1,2,3\}$, where the indices are taken $\bmod 3$.

References

[1] Ayme, J. (2008). The cevian nests theorem. Geometry, 3. Retrieved from http://pagesperso-orange.fr/jl.ayme/vol3.html
[2] Kimberling, C. (2000). Encyclopedia of Triangle Centers. http:// cedar.evansville.edu/ck6/encyclopedia/.
[3] Rideau, F. Hyacinthos Message \#11,203.
[4] MathLinks. http://www.mathlinks.ro/viewtopic.php?t=6579.
[5] Coxeter, H.S.M. (1974). Projective Geometry (2nd ed). New York: Springer Science + Business Media.
[6] Coxeter, H.S.M. (1961). The Real Projective Plane (2nd ed). New York: Cambridge University Press.

[^0]: ${ }^{1}$ Private communication.

