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1 Introduction

Several proofs of the cevian nest theorem (given below) are known, including
one using ratios along sides and Ceva’s theorem and another using Menelaus’s
theorem for quadrilaterals [4]. A synthetic proof using only Desargues’s and
Pappus’s theorems has recently been published as well [1]. Here we give
another synthetic projective geometry proof, one that uses conics. We also
explore the relationship between cevian nests and Graves triangles, a cycle
of three triangles each inscribed in the next. In particular, given A2B2C2

is a cevian triangle of A1B1C1, we give four different characterizations for
the triangles A3B3C3 inscribed in A2B2C2 which complete a Graves cycle of
triangles. The key is to simplify things by using the unique conic C which
touches B1C1 at A2, C1A1 at B2, and A1B1 at C2.

Throughout this note, we use the same notation used (among others)
by Coxeter in The Real Projective Plane [6] and Projective Geometry [5].
Namely, points are denoted by capital letters, lines by lowercase letters. The
line joining the two points A and B is denoted AB, and the intersection of
the two lines a and b is denoted a · b. If a line and a point are denoted by
the same letter (lowercase and uppercase, respectively), then either they are
related by the relevant polarity or they are the perspectrix and perspector,
respectively, for the same pair of triangles. This will be clear from the con-
text. The statement H(AB, CD) means that C is the harmonic conjugate
of D with respect to A and B. Whenever we refer to triangles, we assume
they are nondegenerate (that is, the vertices are not collinear and the sides
are not concurrent). Finally, we use the term “perspector” for the center of
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perspectivity (of two triangles) and “perspectrix” for the axis of perspectiv-
ity.

2 The Cevian Nest

Theorem 1. Let A1, B1, C1 be the vertices of a triangle; A2, B2, C2 the ver-
tices of a triangle inscribed in A1B1C1 (so that A2 is on B1C1, B2 is on
C1A1, and C2 is on A1B1); and A3, B3, C3 the vertices of a triangle inscribed
in A2B2C2, the points lying on the sides of the other in a similar fashion.
Then if any two of the following three statements hold, so does the third:

(1) A2A3, B2B3, C2C3 are concurrent at a point P .
(2) A3A1, B3B1, C3C1 are concurrent at a point Q.
(3) A1A2, B1B2, C1C2 are concurrent at a point R.

If any two (thus all three) of the above statements hold, the three triangles
AiBiCi, i = 1, 2, 3, are said to form a cevian nest.

Note that if A2B2C2 is a cevian triangle of A1B1C1, that is, the lines
A1A2, B1B2, C1C2 concur, then since A2, B2, C2 are the vertices of a triangle,
none of these can be a vertex of A1B1C1, and similarly for A3B3C3. If, say,
A2 = B1, then A1A2, B1B2, and C1C2 would have to concur on the side A1B1,
which forces the points A2, B2, and C2 to lie on a single line.

Proof. We first assume (3) and show that (1) holds if and only if (2) does.
Let D be the harmonic conjugate of A3 with respect to B2C2, E the harmonic
conjugate of B3 with respect to C2A2, and F the harmonic conjugate of C3

with respect to A2B2. Furthermore, let C be the conic touching B1C1 at A2,
C1A1 at B2, and A1B1 at C2. This conic exists because any pair of Desargues
triangles (specifically A1B1C1 and A2B2C2 here) are polar triangles under a
certain polarity. (This is 5.71 of [6], but its proof in [6] does not rely on
the order axioms, so it holds in any nontrivial projective space. The proof
uses Hesse’s theorem, but this is 7.61 in [5], so it does not rely on the order
axioms either.) Under this polarity, the triangle A2B2C2 would lie on the
conic since each vertex lies on its own polar (e.g. A2 on B1C1).

The key fact to note is that, with respect to the conic C , D is the con-
jugate of A3 along B2C2, E is the conjugate of B3 along C2A2, and F is the
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Figure 1: Cevian Nest
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conjugate of C3 along A2B2. This is because D is the harmonic conjugate of
A3 with respect to the two self-conjugate points B2 and C2 along the respec-
tive line (8.11 in [5]).

By definition of the conic, b2 · c2 = A1, so B2C2 = a1. We have A3 =
A1Q ·B2C2, so a3 = (a1 ·q)(b2 ·c2) = (a1 ·q)A1. In particular, a3, a1, and q are
concurrent. But D is conjugate to A3 on the line B2C2, so D lies on a3. Since
D also lies on B2C2 = a1, D must be the point of intersection of a3, a1, and
q. If we assume (2) then similarly, E is the point of intersection of b3, b1, and
q, and F is the point of intersection of c3, c1, and q. The line through D, E,
and F is then the polar q of Q because each of D, E, and F lies on q, and the
point P is the trilinear pole of this line. Conversely, if we start with (1), we
first find that the line through D, E, and F is the trilinear polar of P , then
find its pole. Since D = a3 · a1, d = A3A1, etc. so the fact that D, E, and F
are collinear implies that A3A1, B3B1, and C3C1 are concurrent at a point Q.

Now we prove that (1) and (2) imply (3). Let D, E, and F be as above
and let C be the conic touching C1A1 at B2, A1B1 at C2, and passing through
A2 (such a unique conic exists by 8.41 in [5]). We must show B1C1 is the
polar a2 of A2, for then by Chasles’s theorem (7.31 in [5]) the polar triangles
A1B1C1 = a2b2c2 and A2B2C2 would be Desargues triangles.

By the same argument given above, D is the point of intersection of a3, a1,
and q. Now let q′ be a variable line through D, and let E ′ = q′ ·b3, F

′ = q′ ·c3.
Consider the locus of the intersection X = E ′C2 ·F ′B2 as q′ varies. We have
E ′ D

[ F ′, so the relationship of pencils E ′C2 Z F ′B2 holds. But the line B2C2

is fixed since D lies on B2C2, and a projectivity between two pencils is a
perspectivity if the line joining the pencils is fixed (dual of 4.22 in [5]). Thus
the locus of E ′C2 · F ′B2 is a line.

We claim this line l intersects a2 precisely in A2. First suppose l = a2.
Then c2 · a2 is on l. Since B3 is on C2A2, the lines b3, c2, and a2 are concur-
rent. Thus if X = E ′C2 ·F ′B2 = c2 ·a2 then the fact that E ′ is collinear with
C2 and c2 · a2, yet lies on b3, which goes through c2 · a2 implies E ′ must be
c2 · a2, or else C2 must be on b3. The latter is impossible because C2 is on
c2, so C2 would be the intersection of b3, c2, and a2, contradicting the fact
that A2 is the only point on the conic which lies on a2. Also, F ′ must be
(c2 · a2)B2 · c3. But D, E ′, and F ′ are collinear, i.e. D is collinear with c2 · a2

and (c2 ·a2)B2 ·c3, so D lies on (c2 ·a2)B2. Similarly, since a2 ·b2 is on l we see
that D lies on (a2 · b2)C2. But D lies on B2C2, so this implies B2, C2, c2 · a2,
and a2 · b2 are all collinear, i.e. B2C2 = a2, again a contradiction since A2 is
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the only point on the conic which lies on a2.
Now we show A2 lies on l. Hypothesis (1) implies the line through D, E,

and F is the trilinear polar of R. If we let q′ = EF then E ′ = E because
E is the conjugate of B3 on C2A2, so E lies on b3. Similarly, F ′ = F . Then
X = E ′C2 · F ′B2 = EC2 · FB2 = A2.

Finally, by (2) and the definition of C , B1 = B3Q · c2, so we have
b1 = (b3 · q)C2 and, similarly, c1 = (c3 · q)B2. Hence, by taking q′ = q
above, we see b1 · c1 lies on l. But B1, C1, and A2 are collinear, so b1, c1, and
a2 are concurrent. Therefore b1 · c1 = l · a2 = A2, by the above argument, or
dually B1C1 = a2, just as we needed.

Before moving on, we exhibit the definitions related to cevian nests in
the Encyclopedia of Triangle Centers [2] in terms of our P, Q, and R as in
theorem 1:

� P is the cevapoint of Q and R with respect to A2B2C2.

� Q is the R-Ceva conjugate of P with respect to A2B2C2.

� P is the crosspoint of R and Q with respect to A1B1C1.

� Q is the P -cross conjugate of R with respect to A1B1C1.

3 Graves Triangles and Perspectors Lying on

Perspectrices

Recall that a cycle of Graves triangles is a series of three triangles ∆1, ∆2, ∆3

such that each is inscribed in the next: ∆3 in ∆2, ∆2 in ∆1, and ∆1 in ∆3.
In this section we prove that in a cycle of Graves triangles, if one pair of
triangles is a pair of Desargues triangles, then all are. In addition, if A2B2C2

is a cevian triangle of A1B1C1, we give two characterizations for all triangles
A3B3C3 that can be inscribed in A2B2C2 to complete a cycle of Graves tri-
angles with A1B1C1 and A2B2C2.

Exercise 6 of §4.4 in [5] states: “If one triangle is inscribed in another,
any point on a side of the former can be used as a vertex of a third triangle
which completes a cycle of Graves triangles.” For completeness, we prove
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this here (see figure 2). As a matter of fact, we will see the same pattern
of proof in the theorems that follow, so this is a good warm-up. Suppose
A2B2C2 is inscribed in A1B1C1. For any point A3 on B2C2, except B2, C2,
and B2C2 · B1C1, let B3 = C1A3 · C2A2 and C3 = A3B1 · A2B2. To prove
A3B3C3 completes the cycle of Graves triangles, we just have to show A1 lies
on B3C3, which the Pappus hexagon C1A3B1C2A2B2 does. By permuting
the letters A, B, C, a similar proof shows the result if we had started with
B3 on C2A2 or C3 on A2B2.

Now suppose the starting triangles in the exercise had been Desargues,
too. Then we can still arrive at a Graves cycle of triangles by starting with
a vertex on any side of A2B2C2, but we would have more.

Theorem 2. Let AiBiCi, i = 1, 2, 3, be a series of Graves triangles such
that A1A2, B1B2, and C1C2 are concurrent. Then the three triangles form a
cevian nest, that is, AiAj, BiBj, and CiCj are concurrent for all i 6= j. In
this case, we propose to call this cycle of triangles a Graves cevian nest.

Proof. If we look on the lines B1C1 and B2C2, the Pappus hexagon
A2C2C1A3B1B2 shows that A2C2 · A3B1, C2C1 · B1B2, and C1A3 · B2A2 are
collinear. The first point is better called C2A2 · C3A3; the second point is
the perspector of A1B1C1 and A2B2C2; and the third point is better called
A2B2 ·A3B3. Now if we look on the lines C1A1 and C2A2, the Pappus hexagon
B2A2A1B3C1C2 shows that B2A2 · B3C1, A2A1 · C1C2, and A1B3 · C2B2 are
collinear. The first point is again A2B2 ·A3B3; the second point is again the
perspector of A1B1C1 and A2B2C2; and the third point is now B2C2 ·B3C3.
Thus we see that the points A2B2 · A3B3, C2A2 · C3A3, and B2C2 · B3C3

are collinear with the perspector of A1B1C1 and A2B2C2. Since the inter-
sections of the corresponding sides are collinear, the triangles A2B2C2 and
A3B3C3 are Desargues. By theorem 1, the triangles A1B1C1 and A3B3C3 are
Desargues as well.

Corollary 1. If A2B2C2 is a cevian triangle of A1B1C1 then any point on a
side of A2B2C2 can be used to create a third triangle A3B3C3 which forms a
Graves cevian nest with A1B1C1 and A2B2C2.

Proof. This just combines exercise 6 of §4.4 in [5] (proved above) and theorem
2.
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Figure 2: Graves Cevian Nest
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Theorem 3. Let AiBiCi, i = 1, 2, 3, be three triangles in a cevian nest, so
that A2B2C2 is a cevian triangle of A1B1C1 and A3B3C3 is a cevian triangle
of A2B2C2. Then the following are equivalent (the indices are taken mod 3):

(1) The triangles AiBiCi, i = 1, 2, 3, form a cycle of Graves triangles, that
is, A1B1C1 is also inscribed in A3B3C3.
(2) The perspector of AiBiCi and Ai+1Bi+1Ci+1 lies on the perspectrix of
Ai+1Bi+1Ci+1 and Ai−1Bi−1Ci−1, for all i ∈ {1, 2, 3}.
(3) The perspector of AiBiCi and Ai+1Bi+1Ci+1 lies on the perspectrix of
Ai+1Bi+1Ci+1 and Ai−1Bi−1Ci−1, for some i ∈ {1, 2, 3}.

Proof. (1) ⇒ (2): The proof of theorem 2 shows the result for i = 1. By
cyclically permuting the indices, the same proof shows the result to be true
for each i ∈ {1, 2, 3}.
(2) ⇒ (3): This is trivial since (3) is a special case of (2).
(3) ⇒ (1):

Suppose the perspector P of A2B2C2 and A3B3C3 lies on the perspectrix
q of A3B3C3 and A1B1C1. Let the points on q be Lq = B3C3 · B1C1, Mq =
C3A3 · C1A1, and Nq = A3B3 · A1B1. The Pappus hexagon B2PC2NqA3Mq

shows B2P · NqA3 = B3, PC2 · A3Mq = C3, and C2Nq · MqB2 = A1 are
collinear. Using the inherent symmetry, by cyclically permuting the letters
A, B, C (and thus also Lq, Mq, Nq), we can get two other Pappus hexagons
which show similarly that C3, A3, and B1 are collinear, and that A3, B3, and
C1 are collinear.

Suppose the perspector Q of A3B3C3 and A1B1C1 lies on the perspectrix
r of A1B1C1 and A2B2C2. Let the points on r be Lr = B1C1 · B2C2, Mr =
C1A1 · C2A2, and Nr = A1B1 · A2B2. The Pappus hexagon B1QC1MrA2Nr

shows B1Q · A2Mr = B3, QC1 · A2Nr = C3, and C1Mr · NrB1 = A1 are
collinear. By cyclically permuting the letters A, B, C, we can prove the other
two collinearities.

Suppose the perspector R of A1B1C1 and A2B2C2 lies on the perspectrix
p of A2B2C2 and A3B3C3. Let the points on p be Lp = B2C2 · B3C3, Mp =
C2A2 ·C3A3, and Np = A2B2 ·A3B3. We cannot use Pappus hexagons alone
here because we do not know, for example, that C3 lies on B1Mp, so we have
to be a little tricky. Since A3B3C3 is a cevian triangle of A2B2C2, we have
H(B3Mp, C2A2), and since A2B2C2 is a cevian triangle of A1B1C1, we have
H(A1B1, C2Nr), where Nr = A1B1 · A2B2 as before. Any two harmonic sets
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are related by a unique projectivity (4.21 in [5]), so B3MpC2A2 ZA1B1C2Nr.
The intersection C2 of these two ranges is fixed, so this projectivity is a per-
spectivity (4.22 in [5]): B3MpC2A2 [ A1B1C2Nr. This implies A1B3, B1Mp,
and NrA2 = A2B2 are concurrent. We will use this concurrency in a moment.

The Pappus hexagon A1RB1MpC2Lp shows that A1R ·MpC2 = A2,
RB1 ·C2Lp = B2, and B1Mp ·A1Lp are collinear. In other words, A2B2, B1M ,
and A1Lp are concurrent. But we just saw that A2B2 and B1Mp are con-
current with A1B3, so either A1 = A2B2 · B1Mp is the point of concurrency,
or A1, B3, and Lp are collinear. The former is impossible because A1 cannot
lie on A2B2 (A2B2C2 is a cevian triangle of A1B1C1). But B3 and Lp are
collinear with C3, so either Lp = B3 or A1, B3, and C3 are collinear. The for-
mer is impossible because B3 cannot lie on A2B2 (A3B3C3 is a cevian triangle
of A2B2C2). Therefore, A1 lies on B3C3. By cyclically permuting the letters
A, B, C, we can similarly show B1 lies on C3A3 and C1 lies on A3B3.

Corollary 2. Suppose A2B2C2 is the cevian triangle of A1B1C1 with per-
spector R and A3B3C3 is a triangle inscribed in A2B2C2. The triangles
AiBiCi, i = 1, 2, 3, form a Graves cycle if and only if A2B2C2 and A3B3C3

are perspective from an axis that goes through R.

Proof. If the triangles form a Graves cycle, theorem 2 says they form a cevian,
so we can apply theorem 3. Conversely, if the perspectrix of A2B2C2 and
A3B3C3 goes through R, then in particular the triangles A2B2C2 and A3B3C3

are Desargues, so theorem 1 says the three triangles form a cevian nest and
we can again apply theorem 3.

Corollary 2 gives another characterization of the cevian triangles A3B3C3

which complete a cycle of Graves triangles with A1B1C1 and A2B2C2 given
A2B2C2 is a cevian triangle of A1B1C1. This characterization shows that we
can pick any line p through R (and not through A2, B2, or C2) and get the
triangle A3B3C3 desired by finding the trilinear pole P of p with respect to
A2B2C2.

Before moving on, we feel we must note the duality of Figure 2 when
the three conics are removed from it. There are 9 points (the vertices of
the triangles), each of which lies on 5 lines, and 9 lines (the sides of the
triangles), each of which passes through 5 points. There are 9 further points
(the intersections of corresponding sides of the triangles), each of which lies
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on 3 lines, and 9 further lines (the joins of corresponding vertices of the tri-
angles), each of which passes through 3 points. Finally, there are 3 further
points (the perspectors), each of which lies on 4 lines, and 3 further lines (the
perspectrices) each of which lies on 4 points.

4 Graves Triangles and Conics

Now we introduce the conic C from the proof of theorem 1 into the picture.
First, in theorem 4, we show a natural example of a Graves cevian nest asso-
ciated with C (see Figure 3). Then we give two theorems similar to theorem
3 and thus produce, given A2B2C2 is a cevian triangle of A1B1C1, another
two characterizations of all triangles which can be inscribed in A2B2C2 to
complete the cycle of Graves triangles.

Figure 3: Graves Cevian Nest Associated with a Conic
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Theorem 4. Suppose A1B1C1 is a tangential triangle to a conic C and the
points of contact are A2, B2, and C2. For any point P ∈ C r{A2, B2, C2},
let A3B3C3 be the diagonal triangle of the quadrangle A2B2C2P . Then the
triangles AiBiCi, i = 1, 2, 3, form a Graves cevian nest.

Proof. All we have to show is that A1B1C1 is inscribed in A3B3C3 because
the rest follows from theorem 2. To show A1 lies on B3C3, note that A3

lies on B2C2 = a1, so A1 lies on a3 = B3C3, and similarly for the other two
sides.

In the following theorem, we give a converse and thus more conditions
that are equivalent to the formation of a Graves cevian nest from a cevian
nest.

Theorem 5. Let AiBiCi, i = 1, 2, 3, be three triangles in a cevian nest, so
that A2B2C2 is inscribed in A1B1C1 and A3B3C3 is inscribed in A2B2C2.
Then the following are equivalent (the indices are taken mod 3):

(1) The triangles AiBiCi, i = 1, 2, 3, form a cycle of Graves triangles, that
is, A1B1C1 is also inscribed in A3B3C3.
(2) The perspector of AiBiCi and Ai+1Bi+1Ci+1 lies on the conic C touching
Ai−1Bi−1Ci−1 at Ai, Bi, and Ci, for all i ∈ {1, 2, 3}.
(3) The perspector of AiBiCi and Ai+1Bi+1Ci+1 lies on the conic C touching
Ai−1Bi−1Ci−1 at Ai, Bi, and Ci, for some i ∈ {1, 2, 3}.

Proof. (1) ⇒ (2): We prove the result for i = 2; the other two cases can be
proven by cyclically permuting the indices 1, 2, 3. Suppose C touches B1C1

at A2, C1A1 at B2, and A1B1 at C2. We need to prove P = A2A3 · B2B3

lies on C . We do this by showing A3B3C3 is a self-polar triangle. Since
A3B3C3 is the diagonal triangle of the quadrange A2B2C2P , we know P is
the harmonic conjugate of A2 with respect to PA2 ·B3C3 and A3. If A3B3C3

were self-polar, these last two points would be conjugate. Because conjugate
points on a secant of a conic are harmonic conjugates with respect to the two
self-conjugate points on the secant, P would then have to be a self-conjugate
point and lie on C .

We must show B3C3 = a3. We know A3 = A1Q ·B2C2, so a3 = (a1 ·q)(b2 ·
c2) = (B2C2 · q)A1. Because of (1) we know A1 lies on B3C3, so we just have
to show B2C2 ·q also lies on B3C3. But, just as in the proof of theorem 1, q is
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the trilinear polar of P , so B2C2 · q is the harmonic conjugate of A3P ·B2C2

and thus lies on B3C3 because A3B3C3 is a cevian triangle of A2B2C2.
(2) ⇒ (3): This is again trivial since (3) is a special case of (2).
(3) ⇒ (1): If i = 1, the condition that a conic touching A3B3C3 at A1, B1,
and C1 even exists immediately implies A1B1C1 is inscribed in A3B3C3, so
there is nothing to prove.

If i = 2, then (1) immediately follows from theorem 4.
If i = 3, then Q = A1A3 · B1B3 lies on the conic C touching A2B2C2

at A3, B3, and C3. This time, though A3B3C3Q is a quadrangle inscribed
in C , we do not know its diagonal triangle is A1B1C1 yet. If we can prove
this, then the fact that A2B2C2 is a cevian triangle of A1B1C1 would imply
a1b1c1 = A1B1C1 is a cevian triangle of a2b2c2 = A3B3C3, so the vertices of
A1B1C1 would lie on the sides of A3B3C3.

Figure 4: Anticevian Triangles of A2B2C2 Lying on A3Q, B3Q, C3Q

By theorem 4, A2B2C2 is a cevian triangle of the diagonal triangle of
A3B3C3Q. We also know A2B2C2 is a cevian triangle of A1B1C1, whose
vertices lie on the lines A3Q, B3Q, and C3Q, so we just have to prove that
there is at most one anticevian triangle of A2B2C2 whose vertices lie on these
lines. We will show there is at most one triangle ABC, with A on A3Q, B
on B3Q, and C on C3Q, such that A2B2C2 is even inscribed in ABC (see
Figure 4).

The strategy is to not restrict A to the line A3Q and find the locus of
all A in the plane such that A2B2C2 is inscribed in triangle ABC for some
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B on B3Q and C on C3Q, then intersect that locus with the line A3Q. For
any B on B3Q, we can find C as BA2 ·C3Q (BA2 6= C3Q because A2 cannot
lie on C3Q = C1C3. If it did, then C1A2 = B1C1 would pass through Q,
which would mean C1A1 = C3A3. But B2 lies on C1A1, and A3B3C3 is a
cevian triangle of A2B2C2, so B2 cannot lie on C3A3.) Now we can find A as
CB2 ·BC2. But this is exactly the Braikenridge-MacLaurin construction for
a conic through five points (9.22 in [5]): ABC is a variable triangle with two
of the vertices (namely B and C) lying on two fixed lines (B3Q and C3Q) and
the three sides passing through three fixed points (the vertices of A2B2C2,
which are noncollinear by the assumption that A2B2C2 is a cevian triangle of
A1B1C1). The only thing to check is that B3Q and C3Q are not concurrent
with B2C2, that is, Q does not lie on B2C2. If it did, then since A3 also
lies on B2C2, we would have A3A1 = A3Q = B2C2. But A2B2C2 is a cevian
triangle of A1B1C1, so A1 cannot lie on B2C2. Thus, the locus of all possible
A in the plane is a conic which passes through B2, C2, Q,B3Q · A2B2, and
C3Q · A2C2. In particular, it intersects the line A3Q in Q and at most one
more point. Clearly, A cannot be Q itself - C2 would again lie on A3Q, which
is impossible for the same reason A2 cannot lie on C3Q, as above. Thus, A
can take at most one place on A3Q, so there is at most one such triangle
ABC in which A2B2C2 can be inscribed.

Corollary 3. Suppose A2B2C2 is a cevian triangle of A1B1C1 and A3B3C3

is a triangle inscribed in A2B2C2. Let C be the conic touching A1B1C1 at
A2, B2, and C2. The triangles AiBiCi, i = 1, 2, 3, form a Graves cycle if and
only if A2B2C2 and A3B3C3 are perspective from a center that lies on C .

Before moving on to the final characterization, we need another interest-
ing lemma.

Lemma 1. (1) If, for some polarity, a triangle A2B2C2 is the cevian triangle
of both the triangles A1B1C1 and a1b1c1, then A1B1C1 is self-polar.
(2) If, for some polarity, a triangle A2B2C2 is the anticevian triangle of both
the triangles A1B1C1 and a1b1c1, then A1B1C1 is self-polar.

Proof. (1) Either (i) a1 = B1C1 or (ii) A2 = a1 · B1C1, since A2 lies on a1

and B1C1, and similarly for B2 and C2. It is impossible that (ii) holds for
each of A2, B2, and C2 since these are the intersections of the corresponding
sides of A1B1C1 and a1b1c1, which, by Chasles’s theorem, would be collinear.
We can assume without loss of generality that a1 = B1C1 since otherwise we
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can rename the vertices. Then A1 = b1 · c1, so A1 lies on b1 and c1. Now if
B2 = b1 · C1A1 then, since A1 lies on b1 and C1A1, we have A1 = B2, which
is impossible since A2B2C2 is a cevian triangle of A1B1C1. Thus b1 = C1A1

and, similarly, c1 = A1B1.
(2) Suppose A1B1C1 is not self-polar. Both A1 and b1 · c1 lie on B2C2, and
similarly for the other two sides of A2B2C2. By Chasles’s theorem A1B1C1

and a1b1c1 are Desargues, so A1(b1 · c1) = B2C2, B1(c1 · a1) = C2A2, and
C1(a1 · b1) = A2B2 are concurrent, which contradicts the fact that A2B2C2

is a triangle.

It is curious to note that the proof of (1) requires that the vertices of
A2B2C2 are not collinear, while the proof of (2) requires that the sides are
not concurrent.

The final theorem of this section is the basis for the last characterization
of the triangles A3B3C3 that complete a Graves cevian nest.

Theorem 6. Let Ai, Bi, Ci, i = 1, 2, 3, be the vertices of a cevian nest, so
that A2B2C2 is inscribed in A1B1C1 and A3B3C3 is inscribed in A2B2C2.
Then the following are equivalent (the indices are taken mod 3):

(1) The triangles AiBiCi, i = 1, 2, 3, form a cycle of Graves triangles, that
is, A1B1C1 is also inscribed in A3B3C3.
(2) The perspectrix of AiBiCi and Ai+1Bi+1Ci+1 is tangent to the conic C
touching Ai+1Bi+1Ci+1 at Ai−1, Bi−1, and Ci−1, for all i ∈ {1, 2, 3}.
(3) The perspectrix of AiBiCi and Ai+1Bi+1Ci+1 is tangent to the conic C
touching Ai+1Bi+1Ci+1 at Ai−1, Bi−1, and Ci−1, for some i ∈ {1, 2, 3}.

Proof. (1) ⇒ (2): We prove the result for i = 3; the other two cases can
be proven by cyclically permuting the indices 1, 2, 3. Suppose C touches
B1C1 at A2, C1A1 at B2, and A1B1 at C2. By the proof of theorem 5, the
triangle A3B3C3 is self-polar. Now the perspectrix of A3B3C3 and A1B1C1 is
(B3C3 ·B1C1)(C3A3 ·C1A1), so its polar is A3A2 ·B3B2, the perspector P of
A2B2C2 and A3B3C3. Since the perspectrix is tangent to the conic, its polar
lies on itself, and by theorem 5, P lies on C . Thus, the perspectrix touches
C at P .
(2) ⇒ (3): This is again trivial since (3) is a special case of (2).
(3) ⇒ (1): If i = 1, C touches A2B2C2 at A3, B3, and C3. The fact that
A2B2C2 is a cevian triangle of A1B1C1 implies a1b1c1 is a cevian triangle of
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a2b2c2 = A3B3C3. Since A3B3C3 is a cevian triangle of A2B2C2, the triangles
A2B2C2, A3B3C3, and a1b1c1 form a cevian nest. The pole of the perspectrix
of A1B1C1 and A2B2C2 is the perspector of a1b1c1 and A3B3C3, and it lies on
C because the perspectrix is self-polar. We can now apply theorem 5 to the
cevian nest just mentioned to see that A2B2C2 is a cevian triangle of a1b1c1.
But A2B2C2 is also a cevian triangle of A1B1C1, so by part (1) of lemma 1
A1B1C1 is self-polar, which means A1B1C1 = a1b1c1 is a cevian triangle of
A3B3C3.

If i = 2, the condition that a conic touching A3B3C3 at A1, B1, and C1

even exists immediately implies A1B1C1 is inscribed in A3B3C3, so there is
nothing to prove.

If i = 3, C touches A1B1C1 at A2, B2, and C2. Because A3B3C3 is a
cevian triangle of A2B2C2, a2b2c2 = A1B1C1 is a cevian triangle of a3b3c3,
and this time the triangles a3b3c3, A1B1C1, and A2B2C2 form the cevian nest
we are interested in. We can again apply theorem 5 to this cevian nest to
see that a3b3c3 is a cevian triangle of A2B2C2. But A3B3C3 is also a cevian
triangle of A2B2C2, so by part (2) of lemma 1 A3B3C3 is self-polar, which
means A1B1C1 is a cevian triangle of a3b3c3 = A3B3C3.

Here at last is our final characterization of the A3B3C3 triangles that
complete a Graves cycle.

Corollary 4. Suppose A2B2C2 is a cevian triangle of A1B1C1 and A3B3C3

is a triangle inscribed in A2B2C2. Let C be the conic touching A1B1C1 at
A2, B2, and C2. The triangles AiBiCi, i = 1, 2, 3, form a Graves cycle if and
only if A3B3C3 and A1B1C1 are perspective from an axis that is tangent to
C .

5 Perspectrix ↔ Conic Map

Now consider the perspectrix of A1B1C1 and A2B2C2 and the conic C touch-
ing A1B1C1 at A2B2C2, as in Figure 5. This perspectrix is the trilinear polar
of the perspector R of A1B1C1 and A2B2C2 with respect to A2B2C2 and
also the polar r of R with respect to C (we have seen this multiple times,
especially in the proof of theorem 1). Combinining theorems 3 and 5, we see
that the perspector Q of A1B1C1 and A3B3C3 lies on r if and only if the
perspector P of A2B2C2 and A3B3C3 lies on the conic C .
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If we fix A1B1C1 and P , the above argument gives us a bijective map
(with an obvious inverse) from r to C as follows. If Q is any point on r, find
A3B3C3 by joining Q to the vertices of A1B1C1 and finding the correspond-
ing intersections with the sides of A2B2C2. Then by theorem 1, A2B2C2 and
A3B3C3 are perspective from a point P , and by theorems 3 and 5, P lies
on the conic. In other words, P is the cevapoint of Q and R with respect
to A2B2C2. For the inverse map, if P lies on C , let A3B3C3 be the cevian
triangle of P with respect to A2B2C2. Then the perspector Q of A1B1C1

and A3B3C3 lies on r. In other words, Q is the R-Ceva conjugate of P with
respect to A2B2C2. Since the inverse of the map exists, it is bijective.

Figure 5: Perspectrix ↔ Conic Map

A somewhat different construction for the inverse of this map was given
by Francois Rideau in [3] as follows (in our notation). Given a point P on C ,
find its tangent (or polar) p. Then Q is the trilinear pole of p with respect
to A1B1C1 (see Figure 6 below). To prove this map is the same, we first
note that in our description we connect A1 to A3 and similarly for the other
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vertices, then take the intersection of the resulting concurrent lines, and in
his construction we connect A1 to the harmonic conjugate of p · B1C1 with
respect to B1 and C1 instead, so we just have to show that these two lines
are the same. That is, we have to show A3 lies on the harmonic conjugate of
A1(p · B1C1) with respect to A1B2 and A1C2. This is because the harmonic
conjugate of A3 = A2P · B2C2 with respect to B2 and C2 is the conjugate
point (a2 · p)(b2 · c2) ·B2C2 = (a2 · p)A1 ·B2C2.

Figure 6: Rideau’s Construction

The following is in response to the two questions asked in [3] then. If we
know a triangle A1B1C1 circumscribes a conic C and the points of contact
A2, B2, and C2, we have the following two projective constructions:

(1) Given P on C , to construct the tangent to P , find the trilinear polar
of A1(A2P ·B2C2) ·B1(B2P · C2A2) with respect to A1B1C1.

(2) Given a tangent line p to C , to find the point P of contact, first find
the trilinear pole Q of p with respect to A1B1C1. Then P = A2(A1Q ·B2C2) ·
B2(B1Q · C2A2).

6 Two Cevian Triangles

This section deals with the situation when there are two cevian triangles
DEF and D′E ′F ′ of ABC and the conic C that goes through all six vertices.
Among other results, we prove there is exactly one triangle XY Z which
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simultaneously completes the two Graves cycles with ABC and DEF and
with ABC and D′E ′F ′.

Figure 7: Two Cevian Triangles

Theorem 7. Suppose DEF and D′E ′F ′ are two different cevian triangles
of ABC with respective perspectors P and P ′. Defining

X = EF · E ′F ′, Y = FD · F ′D′, Z = DE ·D′E ′,

XY Z is the unique triangle which simultaneously completes a Graves cycle
with ABC and DEF and another Graves cycle with ABC and D′E ′F ′.
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Proof. To show uniqueness, first note that by corollary 2 the perspector of
ABC and any triangle X1Y1Z1 completing a graves cycle with DEF must lie
on the perspectrix of ABC and DEF . Similarly, this perspector must also
lie on the perspectrix of ABC and D′E ′F ′. Since the two cevian triangles
are not the same, the perspectrices are not the same, so they intersect in one
point O. This point must be the perspector of ABC and X1Y1Z1. In other
words, X1Y1Z1 must be the anticevian triangle of ABC with respect to O.

Since DEF is inscribed in ABC and XY Z is inscribed in both DEF
and D′E ′F ′, we just have to show ABC is inscribed in XY Z. The following
idea is due to Patrick Morton1. Let D be the conic through A, B, C, P, P ′.
Then DEF and D′E ′F ′, being diagonal triangles of quadrangles inscribed in
D , are self-polar with respect to D . As A = EE ′ · FF ′, a = (e · e′)(f · f ′) =
(FD ·F ′D′)(DE ·D′E ′) = Y Z. Since A lies on D , it lies on its polar a = Y Z
as well. Similarly, B lies on b = ZX and C on c = XY .

Theorem 8. In the situation of theorem 7, the traces DEF and D′E ′F ′ lie
on a unique conic C . Furthermore,

1) The triples of triangles XY Z,ABC, DEF and XY Z,ABC, D′E ′F ′ form
Graves cevian nests.

2) The triangle XY Z is self-polar with respect to this conic.

3) The trilinear polars of P and P ′ with respect to ABC and the polars p
and p′ of P and P ′ with respect to C are concurrent at the perspector O
of ABC and XY Z.

4) The perspectors of XY Z with DEF and D′E ′F ′, respectively, lie on
C .

5) The conic D above is the locus of all points P1 whose cevian triangles
on ABC complete the Graves cycle with XY Z and ABC.

Proof. Let G = EF ′.E ′F, H = FD′.F ′D, and I = DE ′.D′E. The Pappus
hexagon BEF ′CFE ′ shows P, G, P ′ are collinear. Similarly (by permut-
ing the letters in A, B, C and D, E, F ) we see that P, H, P ′ are collinear,
and P, I, P ′ are collinear. Thus, the points G, H, I, P, P ′ are all collinear.
By the converse of Pascal’s theorem (essentially the Braikenridge-Maclaurin

1Private communication.
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construction 9.22 of [5]) the hexagon DE ′FD′EF ′ shows that the points
D, E, F, D′, E ′, F ′ all lie on a conic. There are at least five distinct points
among these (five if PP ′ goes through A, B, or C), and there is a unique
conic through five points.

Now, 1) can be proven by theorem 2. Or, we could use Chasles’s theorem
on triangles ABC and XY Z with respect to the conic D , since they are polar
triangles by the proof of theorem 7, and then the cevian nest theorem (theo-
rem 1). The Pascal hexagon DFE ′D′F ′E shows Y, G, Z are collinear. Then
since AGX is the diagonal triangle of EE ′FF ′, the polar of X is AG = Y Z,
and similarly for the other sides. Thus XY Z is self-polar. It was shown in
the proof of theorem 7 that the trilinear polars of P and P ′ pass through O.
The quadrangles DD′EE ′ and FF ′DD′ with diagonal triangles BHY and
CIZ show that the polar of O = BY ·CZ is o = HI = PP ′, so O = p·p′. If Q
is the perspector of DEF and XY Z, D and Q are harmonic conjugates with
respect to X and DX ·Y Z because XY Z is the diagonal triangle of DEFQ.
But X is conjugate to DX · Y Z since XY Z is self-polar, so Q must be the
other intersection of DX with the conic, and similarly for the perspector of
D′E ′F ′ and XY Z. The last remark is just an application of theorem 5.

7 Conclusion

Given A2B2C2 is a cevian triangle of A1B1C1, we now have the following
four different characterizations for the triangles A3B3C3 which can be in-
scribed in A2B2C2 to complete a Graves cycle. A vertex of one such triangle
may lie anywhere on a given side of A2B2C2 (except the vertices of A2B2C2

and the intersections of corresponding sides of A1B1C1 and A2B2C2), and it
is easy to derive the triangle given one vertex. The triangles A2B2C2 and
A3B3C3 must be perspective, and the perspectrix may be any line through
R but not through A2, B2, or C2. The triangles A2B2C2 and A3B3C3 must
be perspective, and the perspector may be any point other than A2, B2, or
C2 on the conic C touching A1B1C1 at A2, B2, and C2. Finally, the tri-
angles A2B2C2 and A3B3C3 must be perspective, and the perspectrix may
be any line tangent to this conic C other than the tangents at A2, B2, and C2.

In particular, in a Graves cevian nest consisting of triangles ∆1, ∆2, and
∆3, where ∆i+1 is a cevian triangle of ∆i, if C is the conic touching ∆i at
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the vertices of ∆i+1, then the perspectrix of ∆i−1 and ∆i touches C at the
perspector of ∆i+1 and ∆i−1, for each i ∈ {1, 2, 3}, where the indices are
taken mod 3.
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